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In a recent paper, Maritan and Banavar [Phys. Rev. Lett.

72, 1451 (1994)] reported the

synchronization of identical chaotic systems by additive noise. We relate such a synchronization to
the maximum Lyapunov exponent of a single system and discuss the underlying mechanisms of the
effect. In the case of the Lorenz equations, the nonvanishing mean of the noise mimics a parameter
change leading to synchronization. For the logistic map a state dependence of the fluctuations is

induced by the boundary conditions.

PACS number(s): 05.45.4+b, 02.50.Ey

I. INTRODUCTION

The effect of fluctuations on chaotic dynamics at-
tracted much attention [1-10] since chaotic systems
are, by definition, extremely sensitive to perturbations.
Somewhat counterintuitive effects such as noise-induced
order [11,12], stabilization by noise [13,14], or stochas-
tic resonance [15,16] are of particular interest. These
effects require specific properties of the chaotic system
and the noise source: Noise-induced order was found
in highly nonuniform systems [11,12], stabilization by
noise is based on multiplicative fluctuations [13,14] , and
stochastic resonance requires comparable time scales of
periodic modulations and mean transition times [15,16].
Therefore, the findings of Maritan and Banavar [1] re-
garding the synchronization of chaos in the logistic map
and in the Lorenz model due to additive noise appeared
as a surprise and evoked some discussion [17,18], espe-
cially since earlier simulations of the logistic map with
additive noise revealed robustness of the positive Lya-
punov exponent [3,12].

The aim of this report is to resolve this contradiction.
We will show that their observations are not genuine
noise effects but a specific result of the bias of their noise
terms. In the case of the Lorenz model, the nonvanishing
mean of the noise term is solely responsible for the syn-
chronization. For the logistic map, their noise terms are
actually state dependent, which leads to negative finite
ttme Lyapunov exponents explaining the synchronization.

II. LORENZ MODEL

First, we briefly recall the results of Ref. [1] concerning
the Lorenz equations [19]

dzx

E = 10(y - :L'),

Z—Zt’l = —zz + 28z — y + R(¢), (1)
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The authors simulate two identical copies of these chaotic
systems “linked with a common noise term” R(t) [1]. As
discussed in Refs. [6,20,21], the maximum Lyapunov ex-
ponent is defined via linearization along noisy trajecto-
ries, and thus it explicitly describes “the separation of
nearby orbits subject to the same external noise [6].”

Let us denote trajectories of the two identical systems
by Z; and &,:

dZ; - -
T (#1) + R(2), (2)
diy .
ke (#2) + R(¢). (3)

If we introduce the difference § = ¥ —Z; we obtain easily

dfi

d:ltj ’

dq . o
T — 5@+ 0@

dt with Jij ==

(4)

In this way, the dynamics of the difference is governed
by the Jacobian of a single system. Consequently, a neg-
ative Lyapunov exponent implies synchronization of the
two systems after some transient time as follows: There
is a finite probability that the trajectories of the two sys-
tems come sufficiently close that linear stability analysis
is applicable. Then, the difference decays exponentially
due to the negative Lyapunov exponent. Consequently,
the Lyapunov exponent of a single noisy system is the
appropriate quantity to characterize the synchronization
of identical systems [17], and therefore, we focus our at-
tention on the effect of noise on Lyapunov exponents.

The authors of Ref. [1] simulate the random term R(t)
by adding every §t = 0.001 time units random numbers
equidistributed in [0, W+/8t]. Obviously, their noise term
has a nonvanishing mean which explains immediately the
synchronization for overcritical W: The noise mimics an
additive constant in the equations. This additional term
in the y equation leads to a stable focus, and hence, to
negative Lyapunov exponents.
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FIG. 1. Decrease of the maximum Lyapunov exponent for

the Lorenz system. Circles, noise according to Ref. [1]; dia-
monds, noise replaced by its mean value.

Figure 1 demonstrates that virtually the same decrease
of the Lyapunov exponent is obtained if the fluctuations
are replaced by the mean value of the noise term.

It was already briefly mentioned in Ref. [1] that sym-
metric notse gives no synchronization. This confirms our
point of view that not the random component but merely
the nonvanishing mean stabilizes.

III. LOGISTIC MAP

The interpretation of synchronization of logistic maps
is less straightforward since the Lyapunov exponent re-
mains positive as also pointed out by Pikovsky [17]. Let
us recall the simulations presented in [1]. The authors
consider a pair of fully developed logistic maps

Tpt1 = 42,(1 — z,) + R,. (5)

The random number R, is chosen from the interval
[=W, W] with the constraint 0 < z,41 < 1, i.e., if R, vi-
olates the bounds a new random number is chosen. The
authors find that the orbits of two such maps coalesce for
overcritical noise strength W if they are linked with the
same realization of noise. Coalescence means that the
distance of the orbits shrinks below a threshold . As
argued by Pikovsky [17], this is not a stabilization in a
sense of a negative Lyapunov exponent but an effect of
finite precision €. Nevertheless, as demonstrated in the
reply [18], there is a remarkably sharp transition to syn-
chronization around W = 0.5. The explanation of this
transition is the aim of the remainder of this section.

For the following considerations, we decompose the
map (5) into two steps. First, we consider the determin-
istic mapping y, := 4z,(1 — z,). Then the random term
R, is added. Since only random numbers that keep the
orbit in the unit interval are accepted, the noise acting
on Yy, is equidistributed in a reduced interval:

R, € [max(—W,—y,), min(1l — y,, W)]. (6)
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Consequently, the mean value of the noise is nonzero if
yn is sufficiently close to the boundaries 0 or 1. More
precisely,

(Ra) =0 for 4o >W N 1—y, > W, (7)
W— n
(Rn)=Ty>0 for y <W N 1—y, >W, (8)
l—y,— W
(Rn)_—_——y—z———<0 for y,>W N 1—y, <W,
(9)

(Ro) =3 —yn for yo <W N 1—y, <W. (10)

In analogy to the procedure leading to Fig. 1, we substi-
tute the random term R,, in the logistic equation by its
mean value (R,(y,)) [cf. Egs. (7)—(10)]. Figure 2 shows
that chaos disappears for increasing W as in the case of
the Lorenz model. This indicates that the bias of the
noise plays the central role.

However, we emphasize that the replacement of the
noise by the deterministic term (R,(z,)) defines quite
a different dynamical system. In order to analyze the
actual stochastic process, we discuss in the following the
effect of the fluctuations on the invariant density and
Lyapunov exponents.

In the deterministic case, the evolution of the density
is governed by the Frobenius-Perron equation

Prt1(z) = [Upn](z)
pr(3 — 3V —2) +pu(3 + 3vVI—2)

= , (11

41—z (11)
with the stationary solution p°
1

Po(x) =~ (12)

n/z(1—x)

Thus, for W = 0 the invariant density has singularities
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FIG. 2. Bifurcation diagram of the logistic equation (5) in
which the random term is replaced by its bias (Rn(yn)).
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at the boundaries £ = 0 and = = 1, which are the most
unstable regions (| ggf‘il attains its maximum). The cor-
responding Lyapunov exponent is given by

_ ! In|4 — 8|
o my/x(l—x)
The noise term R,, induces transitions from the determin-

istic iterate y := 4z(1 — z) to neighboring values z. The
corresponding evolution equation for the density reads

A dr =1n2. (13)

pris(@) = [ wlaly) Upal(w) d. (14)

The transition probabilities w(z|y) can be explicitly writ-
ten as

X[O,l] (ID) X[m—w,z+w] (y)

w(zly) = c(z, W) (15)
X(a,p) () = { (1) g > ; %Z, IIH’ (16)

where the functions x[] reflect the boundary conditions.
Note that the normalization constant ¢(z, W) depends on
noise amplitude and the state . The state dependence
of the random term leads to a repulsion of orbits from
the boundary, and consequently, the probability density
is less concentrated at 0 and 1. Particularly for W > 1,
an equidistribution results:
Ple)=1 (17)
with a Lyapunov exponent A = In4 — 1. As already
mentioned, the changes of the density do not give neg-
ative Lyapunov exponents for any W, which could im-
mediately explain coalescence of orbits. At this point,
we are reminded that coalescence in Ref. [1] means that
the distance shrinks below €. This may happen even by
chance, and the remaining question is: Why are such
events found for W = 0.6 even after as few as 10° it-
erations? The answer can be extracted from finite-time
Lyapunov exponents as discussed in [6] and [12]:

1 m
Alm) — =~ ;lnill — 8z;|.

Figure 3 shows histograms of these averaged (over m =
10 iterations) expansion rates.

For W = 0, the density is concentrated around the
mean value ln 2, whereas for W = 0.6 a pronounced tail
towards negative values can be seen. Note, that A(10) =
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FIG. 3. Normalized histograms of expansion rates for
W = 0 (left) and W = 0.6 (right) from 107 iterations.

—1.5 implies a contraction by a factor of e 7% &~ 3x1077.

This drastic change of the stability properties is in-
duced by the bias of the random term as discussed above.
Since random numbers are discarded if they violate the
bounds 0 < 41 < 1, there is a net bias towards z = 0.5,

d .
where the slope 21 = 4 — 8z is zero.
"

IV. CONCLUSIONS

Effects of additive noise on Lyapunov exponents were
studied in various systems [3,5-9]. It turned out that,
close to bifurcations [2,7,10] and for chaotic windows
[4,6], noise tends to amplify chaoticity. At parameter
values with chaotic dynamics, Lyapunov exponents are
robust against small fluctuations in most cases [3,6,12].

It has been shown in this paper that also the syn-
chronization found in Ref. [1] constitutes no exception,
i.e., additive noise per se does not affect Lyapunov ex-
ponents significantly. The effect of synchronization was
traced back to quite simple mechanisms. For the Lorenz
model, we have shown that not the random part of R(t)
but merely its nonvanishing mean value induces synchro-
nization. For the logistic map, the seemingly additive
noise exhibits a significant dependence on z,, i.e., it can
be regarded as state dependent noise which is known to
strongly affect the stationary probability density [22]. In-
deed, we could show that the noise together with the
boundary conditions moves orbits towards the middle of
the unit interval where stability dominates. Therefore,
the density of finite-time Lyapunov exponents exhibits
a significant tail towards negative values, which makes
synchronization in the sense of Ref. [1] possible.
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FIG. 3. Normalized histograms of expansion rates for
W = 0 (left) and W = 0.6 (right) from 107 iterations.



